ISSN 1600-5368

Tetsuzo Ito

Department of Applied Chemistry, Kanagawa Institute of Technology, Atsugi, Kanagawa 243-0292, Japan

Correspondence e-mail: ito@chem.kanagawa-it.ac.jp

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (O–C) = 0.004 Å R factor = 0.026 wR factor = 0.034 Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Iron methylxanthate

The title complex, tris(*O*-methyldithiocarbonato)iron(III), [Fe(S_2 COCH₃)₃], has an approximate threefold rotation axis passing through the Fe atom. The Fe atom is coordinated by six S atoms in a distorted octahedral arrangement. The six Fe-S distances range from 2.299 (1) to 2.319 (1) Å, with an average of 2.307 (3) Å, showing that the Fe atom is in a low-spin state with short Fe-S distances.

Received 27 March 2002 Accepted 29 April 2002 Online 11 May 2002

Comment

As part of the study of metal xanthates, $M(S_2COR)_n$, where M = metal and R = alkyl, we report here the crystal and molecular structure of iron methylxanthate [abbreviated here as Fe(MeX)₃], (I).

An ORTEPII drawing (Johnson, 1976) of Fe(MeX)₃ with the atomic numbering scheme is shown in Fig. 1. Related tris(dithiocarbamato)iron(III) complexes, $[Fe(S_2CNR_2)_3]$, are known to show a spin equilibrium in the solid state, and the Fe-S distance varies between about 2.30 Å in the low-spin state and about 2.45 Å in the high-spin state (Chandrasekhar & Bürgi, 1984). The average Fe-S distance of 2.307 (3) Å observed in Fe(MeX)₃ shows that the Fe atom is in a low-spin state. The components along the Fe-S bonds of the anisotropic displacement parameters of the six S atoms are systematically larger than that of the Fe atom by an average ΔU of 0.0026 (4) Å², which also shows that the Fe atom is in spin equilibrium among the low-spin states (Chandrasekhar & Bürgi, 1984). The average S_2C-O distance of 1.317 (3) Å is significantly shorter than the average $O-CH_3$ distance of 1.445 (4) Å, showing that the S_2C-O bond has partial doublebond character.

The molecular structure of $Fe(MeX)_3$ is very similar to that of iron ethylxanthate, $Fe(EtX)_3$, except for the different terminal alkyl groups (Hoskins & Kelly, 1970). The $Fe(EtX)_3$ molecule has a crystallographic threefold rotation symmetry, and the Fe-S distances are 2.308 (3) and 2.326 (3) Å.

Acta Cryst. (2002). E58, m265-m266

Printed in Great Britain - all rights reserved

© 2002 International Union of Crystallography

Experimental

1.0 g of potassium methylxanthate and 0.7 g of iron(III) nitrate were each dissolved in 10 ml of pure water, and $Fe(MeX)_3$ powder was precipitated by combining the two solutions. Recrystallization from an ether solution at room temperature gave black polyhedral crystals.

Crystal data

 $\begin{bmatrix} \text{Fe}(\text{C}_2\text{H}_3\text{OS}_2)_3 \end{bmatrix} \\ M_r = 377.40 \\ \text{Monoclinic, } P2_4/n \\ a = 11.329 (1) \text{ Å} \\ b = 13.595 (2) \text{ Å} \\ c = 9.565 (1) \text{ Å} \\ \beta = 106.32 (1)^{\circ} \\ V = 1413.8 (3) \text{ Å}^3 \\ Z = 4 \\ \end{bmatrix}$

Data collection

Rigaku AFC-5*S* diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (Molecular Structure Corporation, 1985) $T_{min} = 0.418, T_{max} = 0.443$ 3585 measured reflections 3249 independent reflections 2467 reflections with $I > 3\sigma(I)$

Refinement

Refinement on F R = 0.026 wR = 0.034 S = 1.422467 reflections 145 parameters

Table 1

Selected geometric parameters (Å, °).

Fe-S1	2.306 (1)	Fe-S4	2.308 (1)
Fe-S2	2.319(1)	Fe-S5	2.301 (1)
Fe-S3	2.307 (1)	Fe-S6	2.299 (1)
S1-Fe-S2	75.56 (3)	S2-Fe-S6	92.98 (3)
S1-Fe-S3	93.46 (3)	S3-Fe-S4	75.84 (3)
S1-Fe-S4	163.94 (3)	S3-Fe-S5	94.87 (3)
S1-Fe-S5	95.32 (3)	S3-Fe-S6	166.95 (3)
S1-Fe-S6	96.73 (3)	S4-Fe-S5	97.48 (3)
S2-Fe-S3	97.46 (3)	S4-Fe-S6	95.74 (3)
S2-Fe-S4	93.73 (3)	S5-Fe-S6	76.11 (3)
S2-Fe-S5	165.04 (3)		

 $\begin{aligned} R_{\rm int} &= 0.031\\ \theta_{\rm max} &= 27.5^\circ\\ h &= -14 \rightarrow 14\\ k &= 0 \rightarrow 17\\ l &= 0 \rightarrow 12\\ 3 \text{ standard reflections}\\ \text{every 150 reflections}\\ \text{intensity decay: } 0.4\% \end{aligned}$

H-atom parameters constrained
$w = 1/\sigma^2(F)$
$(\Delta/\sigma)_{\rm max} = 0.002$
$\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Figure 1

ORTEPII (Johnson, 1976) drawing of the iron methylxanthate complex. Displacement ellipsoids are drawn at the 50% probability level.

H atoms were placed in geometrically calculated positions and made to ride on their parent atoms with $U_{\rm iso}$ parameters equal to 1.2 times the $U_{\rm eq}$ parameters of their parent atoms.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1988); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN* (Molecular Structure Corporation, 1985); program(s) used to solve structure: *MITHRIL* (Gilmore, 1984); program(s) used to refine structure: *TEXSAN*; molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *TEXSAN*.

References

- Chandrasekhar, K. & Bürgi, H.-B. (1984). Acta Cryst. B40, 387-397.
- Gilmore, G. J. (1984). J. Appl. Cryst. 17, 42-47.
- Hoskins, B. F. & Kelly, B. P. (1970). J. Chem. Soc. D, pp. 45-46.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Molecular Structure Corporation (1985). *TEXSAN*. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.